Supervised Nonparametric Image Parcellation
نویسندگان
چکیده
Segmentation of medical images is commonly formulated as a supervised learning problem, where manually labeled training data are summarized using a parametric atlas. Summarizing the data alleviates the computational burden at the expense of possibly losing valuable information on inter-subject variability. This paper presents a novel framework for Supervised Nonparametric Image Parcellation (SNIP). SNIP models the intensity and label images as samples of a joint distribution estimated from the training data in a non-parametric fashion. By capitalizing on recently developed fast and robust pairwise image alignment tools, SNIP employs the entire training data to segment a new image via Expectation Maximization. The use of multiple registrations increases robustness to occasional registration failures. We report experiments on 39 volumetric brain MRI scans with manual labels for the white matter, cortex and subcortical structures. SNIP yields better segmentation than state-of-the-art algorithms in multiple regions of interest.
منابع مشابه
Nonparametric Mixture Models for Supervised Image Parcellation.
We present a nonparametric, probabilistic mixture model for the supervised parcellation of images. The proposed model yields segmentation algorithms conceptually similar to the recently developed label fusion methods, which register a new image with each training image separately. Segmentation is achieved via the fusion of transferred manual labels. We show that in our framework various setting...
متن کاملSemi-supervised statistical region refinement for color image segmentation
Some authors have recently devised adaptations of spectral grouping algorithms to integrate prior knowledge, as constrained eigenvalues problems. In this paper, we improve and adapt a recent statistical region merging approach to this task, as a nonparametric mixture model estimation problem. The approach appears to be attractive both for its theoretical benefits and its experimental results, a...
متن کاملCombining learning-based intensity distributions with nonparametric shape priors for image segmentation
Integration of shape prior information into level set formulations has led to great improvements in image segmentation in the presence of missing information, occlusion, and noise. However, most shape-based segmentation techniques incorporate image intensity through simplistic data terms. A common underlying assumption of such data terms is that the foreground and the background regions in the ...
متن کاملRelaxational metric adaptation and its application to semi-supervised clustering and content-based image retrieval
The performance of many supervised and unsupervised learning algorithms is very sensitive to the choice of an appropriate distance metric. Previous work in metric learning and adaptation has mostly been focused on classification tasks by making use of class label information. In standard clustering tasks, however, class label information is not available. In order to adapt the metric to improve...
متن کاملTopics Over Nonparametric Time: A Supervised Topic Model Using Bayesian Nonparametric Density Estimation
We propose a new supervised topic model that uses a nonparametric density estimator to model the distribution of real-valued metadata given a topic. The model is similar to Topics Over Time, but replaces the beta distributions used in that model with a Dirichlet process mixture of normals. The use of a nonparametric density estimator allows for the fitting of a greater class of metadata densiti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention
دوره 12 Pt 2 شماره
صفحات -
تاریخ انتشار 2009